Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Micromachines (Basel) ; 11(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906816

RESUMO

It is of great importance for pipeline systems to be is efficient, cost-effective and safe during the transportation of the liquids and gases. However, underground pipelines often experience leaks due to corrosion, human destruction or theft, long-term Earth movement, natural disasters and so on. Leakage or explosion of the operating pipeline usually cause great economical loss, environmental pollution or even a threat to citizens, especially when these accidents occur in human-concentrated urban areas. Therefore, the surveying of the routed pipeline is of vital importance for the Pipeline Integrated Management (PIM). In this paper, a comprehensive review of the Micro-Inertial Measurement Unit (MIMU)-based intelligent Pipeline Inspection Gauge (PIG) multi-sensor fusion technologies for the transport of liquids and gases purposed for small-diameter pipeline (D < 30 cm) surveying is demonstrated. Firstly, four types of typical small-diameter intelligent PIGs and their corresponding pipeline-defects inspection technologies and defects-positioning technologies are investigated according to the various pipeline defects inspection and localization principles. Secondly, the multi-sensor fused pipeline surveying technologies are classified into two main categories, the non-inertial-based and the MIMU-based intelligent PIG surveying technology. Moreover, five schematic diagrams of the MIMU fused intelligent PIG fusion technology is also surveyed and analyzed with details. Thirdly, the potential research directions and challenges of the popular intelligent PIG surveying techniques by multi-sensor fusion system are further presented with details. Finally, the review is comprehensively concluded and demonstrated.

3.
Sensors (Basel) ; 20(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707822

RESUMO

The Global Navigation Satellite Systems (GNSS) becomes the primary choice for device localization in outdoor situations. At the same time, many applications do not require precise absolute Earth coordinates, but instead, inferring the geometric configuration information of the constituent nodes in the system by relative positioning. The Real-Time Kinematic (RTK) technique shows its efficiency and accuracy in calculating the relative position. However, when the cycle slips occur, the RTK method may take a long time to obtain a fixed ambiguity value, and the positioning result will be a "float" solution with a low meter accuracy. The novel method presented in this paper is based on the Relative GNSS Tracking Algorithm (Regtrack). It calculates the changes in the relative baseline between two receivers without an ambiguity estimation. The dead reckoning method is used to give out the relative baseline solution while a parallel running Extended Kalman Filter (EKF) method reinitiates the relative baseline when too many validation failures happen. We conducted both static and kinematic tests to assess the performance of the new methodology. The experimental results show that the proposed strategy can give accurate millimeter-scale solutions of relative motion vectors in adjacent two epochs. The relative baseline solution can be sub-decimeter level with or without the base station is holding static. In the meantime, when the initial tracking point and base station coordinates are precisely obtained, the tracking result error can be only 40 cm away from the ground truth after a 25 min drive test in an urban environment. The efficiency test shows that the proposed method can be a real-time method, the time that calculates one epoch of measurement data is no more than 80 ms and is less than 10 ms for best results. The novel method can be used as a more robust and accurate ambiguity free tracking approach for outdoor applications.

4.
Sensors (Basel) ; 20(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455531

RESUMO

The conventional temperature drift error (TDE) compensation model cannot decouple temperature dependence of Si-based materials because temperature correlated quantities (TCQ) have not been obtained comprehensively, and Micro-Electro-Mechanical System gyros' (MEMS-gyros') environmental adaptability is reduced in diverse, complicated conditions. The study presents modification of TDE compensation model of MEMS-gyros based on microstructure thermal effect analysis (MTEA). First, Si-based materials' temperature dependence was studied in microstructure with thermal expansion effect and TCQ that determines the structural deformation were extracted to modify the conventional model, including temperature variation and its square. Second, a precise TDE test method was formed by analyzing heat conduction process between MEMS-gyros and thermal chamber, and temperature experiments were designed and conducted. Third, the modified model's parameters were identified based on radical basis function artificial neural network (RBF ANN) and its performance was evaluated. Last, the conventional and modified models were compared in performance. The experimental results show MEMS-gyros' bias stability was up to 10% of the conventional model, the temperature dependence of Si-based materials was decoupled better by the modified one and the environmental adaptability of MEMS-gyros was improved to expand their application in diverse complicated conditions.

5.
Sensors (Basel) ; 20(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041098

RESUMO

The solution of carrier phase ambiguity is essential for precise global navigation satellite system (GNSS) positioning. Methods of searching in the coordinate domain show their advantage over the methods based on ambiguity fixing, for example, immune to cycle slips, far fewer epochs taken for obtaining the precise solution. However, there are still some drawbacks via using the Ambiguity Function Method (AFM), such as low computation efficiency and the existence of a false global optimum. The false global optimum is a situation where the Least Square (LS) criterion achieves minimum in another place than the point of the actual position, which restricts the application of this method to single-frequency receivers. The numerical search approach derived in this paper is based on the Modified Ambiguity Function Approach (MAFA). It focuses on eliminating the false optimum solution and reducing the computation load by utilizing single-frequency receivers without solving the ambiguity fixing problem. An improved segmented simulated annealing method is used to decrease the computation load while the Kernel Density Estimator (KDE) method is used to filter out the false optimum candidates. Static experiments were carried out to evaluate the performance of the new approach. It is shown that a precise result can be obtained by handling two epochs of data with z coordinate fixed to the referenced value. Meanwhile, the new approach can achieve a millimeter level of position accuracy after dealing with nineteen epochs of observations data when searching in x , y , z domain. The new approach shows its robustness even if the search region is broad, and the prior position is several meters away from the referenced value.

6.
Folia Microbiol (Praha) ; 65(2): 339-351, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31256341

RESUMO

Mastitis in dairy cows is generally considered to be the most expensive disease for dairy farmers worldwide. The overuse of antibiotics is a major problem in the treatment of bovine mastitis, and bacteriophage therapy is expected to provide an alternative treatment. The primary aim of this study was to evaluate the efficacy of a phage cocktail against mastitis in a mouse model. First, a Staphylococcus aureus strain was isolated from milk samples taken from mastitis cows from dairy farms in Xinjiang, China, and it was designated as Sau-XJ-21. Next, two phages (designated as vBSM-A1 and vBSP-A2) with strong lytic activity against Sau-XJ-21 were isolated from mixed sewage samples collected from three cattle farms in Xinjiang. Phages vBSM-A1 and vBSP-A2 were identified as members of the Myoviridae and Podoviridae families, respectively. The two phages exhibited a wide range of hosts, especially phage vBSM-A1. To evaluate the effectiveness of the two phages in the treatment against mastitis, female lactating mice were used 10-14 days after giving births. The mice were divided into six groups; one group was kept as healthy control, while the remaining five groups were inoculated with the isolated S. aureus strain to induce mastitis. Four hours after bacterial inoculation, mice in these groups were injected with 25 µL phosphate buffer saline (negative control), ceftiofur sodium (positive control), or phage, either individually or as a cocktail. The mice were sacrificed 20 h later, and the mammary glands were removed and subjected to further analysis, including the quantitation of colony-forming units (CFU), plaque-forming units (PFU), and gross macroscopic as well as histopathology observation. Mice with induced mastitis exhibited significantly improved mastitic pathology and decreased bacterial counts after they had been given phage treatments, with the phage cocktail being more superior than either phage alone. Furthermore, the cocktail treatment also maintained the highest intramammary phage titer without spreading systemically. The effectiveness of the phage cocktail was comparable to that produced by ceftiofur sodium. According to the data obtained for the mouse model of mastitis, phage therapy could be considered as an innovative alternative to antibiotics for the treatment of bovine mastitis.


Assuntos
Bacteriófagos/fisiologia , Mastite Bovina/terapia , Terapia por Fagos/métodos , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/virologia , Animais , Bovinos , China , Feminino , Mastite Bovina/microbiologia , Camundongos , Leite/microbiologia , Myoviridae/fisiologia , Terapia por Fagos/veterinária , Podoviridae/fisiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia
7.
Sheng Wu Gong Cheng Xue Bao ; 35(6): 1021-1028, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31231998

RESUMO

Adenosine 5'-monophosphate-activated protein activated protein kinase (AMPK), a heterotrimeric complex, is an important kinase to regulate glycolipid metabolism and energy balance involved in a variety physiological processes in human body. Many research indicated that the function and activity of AMPK were closely related to inflammation, diabetes and cancers. Recent reports show that inhibition of metformin (a first-line drug) on hepatic glucose in patients with hyperglycemia is associated with AMPK pathway, suggesting that targeting AMPK may be one of the effective strategies for the prevention and treatment of a variety of chronic diseases. Here, we review research progress on the structure, activation and regulation of AMPK in glycolipid metabolism to provide an insight into the basic and clinical research of diabetes therapy.


Assuntos
Metabolismo Energético , Proteínas Quinases Ativadas por AMP , Adenosina , Monofosfato de Adenosina , Ativação Enzimática , Glicolipídeos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...